
WEATHER CHECKING APPLICATION 

Lech Dzięgielewski 
Secondary School Degree, Zespół Szkół Elektrycznych im.T.Kościuszki w Opolu 

E-mail: ldziegielewski@o2.pl 

Supervised by: Michał Podpora 
E-mail: ravyr@klub.chip.pl 

ABSTRACT 

In this paper author describes the development process of his computer application, capa-
ble of getting the weather forecasts data from definite www servers. 

1. INTRODUCTION 

Weather forecasting is one of these problems, which are never going to expire. People read 
forecasts in newspapers everyday, watch them in TV and check them in specialised Inter-
net services. The possibility to check the weather in the Internet seems to be the most at-
tractive one for software developers. 

The main goal of my project was to create an application able to connect with one of these 
services, and to show the actual weather of any place on the world to the user. 

2. DEVELOPING PROGRESS 

The most important thing, when writing a computer program, is to decide, what exactly the 
program has to do, and how do you want to make it do it. In my case, the point was clear - 
I wanted to know what temperature is outside and how it is going to change in the next 
twelve hours. 

I came to conclusion that the best solution will be to connect to one of the Internet services 
with cities database huge enough, and then to get the specified information. 

2.1. FIRST STEPS 

The programming language I used, was C#. This language is extremely intuitive and easy 
to understand. The .NET Framework platform gives developers the access to many useful 
classes and functions. In addition, .NET Framework manages the memory on its own, so 
developers don’t have to concern about e.g. forgotten, non-used variables. 

The integrated development environment (IDE) I used, was Microsoft Visual C# 2008 Ex-
press Edition. Its biggest advantage is that it is free of charge as long as I don’t use it to 
create commercial programs. In addition, its complex but intuitive interface is great advan-
tage for new developers. 



Like I mentioned before - my program is connecting to the service over the Internet. To do 
it I used HttpWebRequest and HttpWebResponse classes - they are default .NET Frame-
work classes. Thanks to them my program is able to connect with any website and obtain 
its HTML code. In this code, my program is going to search for information it needs. 

An important advantage of this application (in comparison to weather forecast servers) is 
the time, which you need to get the information. In my application I focused only on cer-
tain, most important information, passing over lots of useless or redundant data. Using my 
application, user can get the information that he really needs faster than through any web 
browser. In addition, my application can be minimized to tray - the forecast for current city 
is auto-refreshed, so the user doesn't need to use web browser at all to get the information 
about weather. 

2.2. VISUAL INTERFACE  

What would be a good program without good interface? In my case, visual look is pretty 
simple. “Weather Checker” contains: 

� one form - a place where the user can type the desired city name 

� one submit button  

� sixteen controls (“labels” and “pictureboxes”) used to show gathered information. 

In case of more than one search result, a window containing “listbox” appears. User can 
choose which city from the list interests him. 

 

Obrázek 1: Visual interface. 

 

2.3. HTML  CODE PROCESSING 

“Weather Checker” is processing HTML code three times during one search. First and sec-
ond time it searches through the code to find if any cities are found (I’ll explain later why it 
happens twice). If it finds a city, it adds it to the city list and opens the results window. The 
third time, it is processing the code to gather specific information: 

� actual time 

� actual temperature (it also shows “real feel” temperature – it’s conditioned by tem-
perature, wind and humidity) 

� weather (rain, snow, clouds etc.) 



� humidity 

� air pressure 

� wind (direction and speed) 

� visibility 

� sunrise and sunset times 

� next 12 hours forecast 

To process the code, I used methods provided by String class – String.Contains, 
String.Replace, String.Remove, String.IndexOf and String.Insert. These methods are used 
to edit text strings – a special loop is reading HTML code line by line, and if any of the 
lines contain specific code, these methods are editing it and assigning values to the vari-
ables. 

2.4. ENCOUNTERED PROBLEMS AND SOLUTIONS  

I've already created few similar programs, but this project has been the largest I've ever 
made. This had to cause several new problems. 

The biggest of all of them was very easy to solve. The service I used, offers two different 
sub pages - one is used for searching for USA cities, second for cities of "the rest of the 
world". The solution was the double use of HttpWebRequest and HttpWebResponse 
classes during the search operation. 

In webpages that use CMS (Content Management Systems) or CSS (Cascade Style 
Sheets), the location and/or content of certain information in HTML code may be changed 
without changing overall site template (structure). My application is going to work cor-
rectly even after some serious changes of a site’s content. Only full reorganization of ser-
vice may cause some problems in Weather Checker searching process. Luckily, such 
things happen very rarely, because in case of huge services it takes a lot of time and work.  

3. CONCLUSIONS  

Final effect is satisfying. Program is showing current weather in any place of the world. 
During the development process, I broadened my knowledge and programming skills. In 
future I'm planning to add “next 7 days” forecast. I have also been thinking about convert-
ing “Weather Checker” into personal desktop organizer (clock, calendar with option to add 
notes, alarm, weather etc.). I hope I’ll be able to realize my plans in future. 

REFERENCES 

[1] http://msdn2.microsoft.com/en-us/library 

[2] http://www.codeproject.com 

[3] Perry, S.: Core C# and .NET, Helion S.A., Warszawa 2006, ISBN 83-246-0320-4 


